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Abstract

In this paper we discuss the evolution of domain walls generated in the

early universe considering, unlike the previous studies, an interaction

between the walls and a major gaseous component of the dark matter.

The walls are supposed able to reflect the particles elastically and with

a reflection coefficient of unity. We discuss a toy Lagrangian that could

give rise to such a phenomenon. In the simple model studied we obtain

highly non-relativistic and slowly varying speed s for the domain walls

(-._ 10-2(1 + z) -_) and negligible distortions of the microwave background.

In addition, these topological defects may provide a mechanism of form-

ing the large scale structure of the Universe, by creating fluctuations in

the dark matter 5p/p .._ O(1)on a scale comparable with the distance

the walls move from the formation ( in our model d < 20h -_ Mpc). The

characteristic scale of the wall separation can be easily chosen to be of

the order Of 100 Mpc instead of being restricted to the horizon scale, as

usually obtained.

\
\

A
Operated by Universities Research Association Inc. under contract with the United States Department of Energy



_"IP"



1. Introduction

The cosmological consequences of primordial phase transitions associated with

scalar fields have been the subject of many studies in recent years. The topologi-

cal defects created in the transitions, such as domain walls, strings and monopoles

are potentially of great interest for Cosmology, since they could supply seeds for the

formation of the large scale structure of the Universe. Specifically, domain walls are

sheet-like regions of false vacuum in-between domains having different and discon-

nected vacuum ground states of the scalar field. The simplest and the most studied

model involves a real scalar field with a quartic potential and a negative sign for

the mass term; after the phase transition the field rolls down to one of the two zero

temperature minima for the potential; this leaves a domain structure on scales bigger

than the correlation length of the field, resembling closely what happens in an Ising

model _ When originally introduced, the phase transitions considered were on the

GUT scale _ The trouble is that domain walls on the GUT scale rapidly become the

dominant form of matter in the Universe and produce much too big distortions in the

present microwave background.

Recently, interest in domain walls has been raised again considering late phase

transitions (at z -_ 100) that would give rise to so called "soft'domain walls 3. These

walls may never be massive enough as to distort the microwave background but may

a priori be a dominant gravitational component of the present Universe, triggering

the formation of galaxies and changing the expansion rate. These possibilities have

been excluded by a numerical study 4 of the evolution of the field itself through the

phase transition and after, as the walls appear and evolve by their surface tension .

The domain walls soon reach relativistic speeds and the average scale of the system

becomes comparable to the horizon scale, making these walls unusable for the forma-



tion of the large scale structures we'see s,s. Very similar results have been obtained 7

by considering directly the evolution of the walls after the phase transition . In that

calculation the approximation taken is that the wall thickness is much smaller than

the radius of curvature of the wall surface.

The problems mentioned arise due to the lack of energy dissipation in the models

considered; the mass-energy stored in the walls gets efficiently converted into their

kinetic energy, rapidly raising them 46 relativistic speeds. We therefore consider the

effect of introducing in the equation of motion of the walls a friction term that is a

function of the wall speed relative to the background matter and to its density. The

idea of studying the consequences of friction on domain walls can be traced back to

refs.l,8,9, but it was never fully developed because it was introduced in the context of

GUT scale phase transitions, in which case including friction would even worsen the

problems pointed out previously. In this paper we will consider much lower energy

scales, of the same order of those obtained in ref.3. It will be shown that indeed

there exists an interesting range of the wall energy density for which the average

"inter-wall "distance is of the order of 100 Mpc today, and that these domain walls

are compatible with the limits on the anisotropy of the microwave background.

The paper is organized in the following way: in section 2 we derive the equation

of motion of an element of domain wall without any friction term other than the

usual due to the universal expansion; in section 3 we concentrate our attention on

the friction pressure arising when walls move through a homogeneous gas reflecting

all incident particles elastically; in section 4 we introduce the results of section 3 into

the equation of motion previously calculated; in section 5 we discuss what kind of

particle Lagrangian may lead to the premises of this paper and the consequences of

our model on the microwave background.
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2. The equation of motion in the absence of friction

In order to approach the problem we will assume, first of all, that we are deal-

ing with domain walls late enough after the phase transition so that the thin wall

approximation can be considered roughly valid 7. We are therefore interested in the

motion of sharp interfaces under their surface tension. The shape of the network,

which is related to the details of the model chosen, will turn out to be unimportant

in the discussion. The important assumption made here is that we are dealing with

two or more degenerate values for the vacuum ground state, so that the driving force

for the motion of the walls is only due to their surface tension.

Many approaches may be considered to get the local equation of motion of the

walls; the most direct of these is just to start with the well known equation of motion

for real scalar fields 4,1o

/b+ 3a-¢ - 1 0va 7 v2¢ = -0-$ (1)

where a is the scale factor, given by a = t213 if [2 = 1 ( we express t in 2Hol/3 units,

Ho being the present value of Hubble constant; a = 1 today). Eq. (1) is expressed

in comoving coordinates and universal time. After the phase transition there are

regions of different vacua separated by kinks (which are classical solutions of eq.(1)).

Throughout the following calculations we will assume that these kinks are moving

non-relativistically; this will turn out to be a sensible choice ( see section 4 ).

In general we can define as the surface of a kink the 2-d space on which 0V/0I, = 0;

at each point of the surface we can label as x the axis normal to it. If zo(t) is the

intercept of the surface with the z axis and the principal radii of curvature at the

point are much bigger than the wall thickness A we can represent the kink by a

function O(x - xo(t)). The calculation is easily performed when we recall that



V2= _92 _za---_+ (9. _)

where x is the unit vector perpendicular to the kink surface. The divergence 4-

is, in 3-d, the sum of the curvatures along the principal axes of the surface at the

point considered 11. In this way from eq. (1) we get

( . - - or (2)-Xo_ + Xob-_-_=) - 3_o - ax---r + _(v. _) -a--_

Evaluating (2) at x = xo we see that cqO/c3x becomes very big when A --, 0

(OO/c3x .,. A -1 ), while the c32d;/c3x 2 term is very small ( it would be exactly

c3_d;/oOx2 = 0 if the wail were straight ). In the thin wall approximation we therefore

get to the final expression

_o + 3-*o-- --- + (3)
a 2

where r, and r_ are the principa]comoving radiiof curvature at the chosen point of

the wall network.

If there were no universal expansion (set a = 1 constant ) then eq.(3) would

look like _o = -(l/r1 + 1/r_) ; if a is the mass-energy density of the walls, then

PT = a(1/rl + 1/r_) would simply be the pressure due to the surface tension, exactly

the same form that one obtains in condensed matter. This also reminds us that eq.(3)

is just Newton's second law divided by a.

3. The friction term

We now derive the pressure exerted on the wails moving with speed v << 1 through

some homogeneous medium interacting with it. We are going to study only the case

in which the medium remains homogeneous throughout all the period of evolulion

considered. This can be considered valid, for example, if perfectly reflecting walls



move so little that they are not able to reshuffle the bulk of the matter, i.e. if they

move of a small fraction of the distance between each other, so that no particle

interacts with two different walls in a cosmological time (see also the discussion at

page 7). In all the following we are restricting ourself to this simple case.

We begi n by writing down the general expression for the friction force acting on

the domain walls as they move non-relativistically through a homogeneous ga_s. The

particles coupled with the walls will be taken to be weakly interacting (WIMP's). We

will also suppose that the walls are able to reflect elastically all the incident particles,

regardless of their energy at the impact. This condition could be relaxed, as we will

discuss at the end of this section.

For a non-relativistic gas we can write that the pressure exerted by the gas on the

walI is given by (see Appendix):

P] = B-2o (y _ y=)2f(ly l)dyx +

[' B-2o (y _ y,)2 f([Y_l) dy:_ (4)2rnn
d... Oo

where B - re�T, y = B_v and y_ = B°v_.

Let's consider the limits in which y << 1 and y >> 1. In the former case the

thermal speed of the particles is much greater than the speed of the domain wall,

since the average thermal momentum of the particles is i0 "-, T; in the latter case the

wall is moving through particles effectively at rest and the volume spanned remains

depleted of the gas. The case y >> 1 will turn out to be the most interesting in our

discussion.

For y << 1, changing the variables inside the integrals ( yl = y-y_) and expanding

f(lYxl) in power series around Yl, we get

= v f'(v )dv = (5)
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where F - -f_CY_f'(yl)dyl is a constant of order unity. For y >> 1 insteadwe

obtain

P! = 2ran v _ (6)

since f(y_) ~ 0 for y_ >> 1 and therefore we can substitute (y - y_)_ by y2 in the

integrals. Such a result is not surprising if we recal] that in this case Ap _ 2mv and

that the number of particles hitting the unit area per unit time is nv.

The case in which the gas is relativistic is even easier, since the number of particles

hitting the wall per unit time is simply given by n ( c = 1 ) on both sides of the surface.

Taking v << 1 we get

[/? /0 ]P/=n p_(l+v)f(lPxl)dp_- px(1-v)f(lp_[)dp_ =2nvfi_ (7)

so that Pf ~ v T 4 which is the limit discussed in the review 1

We can also give an evaluation of the average thermal speed of the particles in-

teracting with the walls e.g. for light neutrinos and for gas having the Boltzmann

distribution, supposing that the particles decouple at a certain zd (note that through-

out the paper z + 1 -- a-l). The momentum of the particles shifts with the expansion

of the Universe so that "_d/'_rn_(z) = (zd + 1)/(z + 1), where 7 -1 = v/] " __2; if at

decoupling Ta >> m then Pd ~ Td; if Ta <:< rn then rng_ ,,_ Td, so that Pd '_ (rnT) 1/2.

Assuming the particles to be non-relatMstic today we get

~ _ + 1+ 1 (8)

for Ta << m and

Zd + 1 (9)

for Td >:> m. Ifweassume neutrinos of mass m = 10 eV and Td ~ 1 Mev weget

_(z) ~ 10 -_ at z = 0. This result: will turn out to be useful in the following discussion.



In closing this section we go ba:ckbriefly to our initial assumptions. Although

weare interestedhere in studying the consequencesof a reflection coefficientcloseto

unity, there couldbe casesin whichonehas to dealwith anenergydependentpartial

transmissionof the incident particlesthrough the walls. This would lead to a classof

solutionsin which the wallsmay decouplefrom the matter after acertain stage,when

their speedwith respectto the matter becomesbigger than a critical value. These

possibilitiesare at presentunder investigationand gobeyond the goalsof this paper.

4. Domain walls and friction: a simple case

In this section we introduce the previously calculated friction term into the equa-

tion of motion of the domain walls.

Define R = ax and v = a_co. We can rewrite eq.(3) in terms of physical coordinates

and peculiar speed v and add up the friction term we have been talking about in the

previous section. As we are going to show soon the most interesting case to study is

the y >> 1, when the domain walls move fast with respect to the thermal motion of

the gas. If the matter interacting is a major component of the dark matter then it

follows that the gas is highly non relativistic and y >> 1 during most of the evolution

of the network, as shown in a check of self-consistency at the end of this section.

We define P,,r, =mn SO that Pm= p,-r,o/a 3, where pmo is the mass density of the

matter interacting with the walls today. Inserting eq.(6) into eq.(3) we get 12

6 + 2av + _--_ =- + (10)a

where kl = 2pmo/a. The constant a is the energy density of the walls. Let's now

suppose that z3 << klv2/a z and 2h/a << klv/a z. This also will turn out to be self-

consistent. We therefore remain with the important equation:



v 2/ a 3 = - K (-_-_l + -_ ) (11)

where we define K -- k_-1.

Eq.(11) can be finally written in the more useful comoving coordinates as

Xo = + (12)

We are interested in how much the walls move in average from the original con-

figuration, and therefore we average the curvature over the surface S of the network

contained in an arbitrarily large volume V >> _z. The quantity _ is the mean interwa]l

distance in comoving coordinates, defined as a point by point average of the distance

to the next neighbouring wall integrated 13 over S. We therefore obtain

- 2s 7, + dS (13)

In general _ = _f (with/_ -,_ O(1) ), so that we finally get to

(14)

where K = a/2pmo.

Since we are studying the case in which _ changes little from the phase transition

to the present time, we can consider eq.(14) as an estimate of the average comoving

speed ÷, which remains roughly constant. Our goal would be to determine a given _,

but before doing so we should slightly modify eq.(14) taking into account the following

correction. The friction term we utilize in eq.(10) is based on the assumption that

only one reflection occurs to each particle, tn comoving coordinates the speed of a

free particle goes like _p --, a -2. In the case y >> 1 after being reflected particles

have a speed double than that of the wall, but this decreases due to the universal

expansion and soon they get scattered again. A priori this fact could modify the form

of the law of motion of the walls, but this is not the case, as ,re will see in a moment.



Let's give a numerical estimate. Consider a wall moving at constant comoving speed

(we will check the validity of the assumption at the end of the calculation). At

a certain time t_ a particle at rest is reflected and its speed is henceforth given by.

÷p(t) = 2i'(t,/t) 4/3 (since a = t 213 if fl = 1). The maximum comoving distance x_a_

from the wall is reached at the time tma,, when the wall and the particle have equal

speed. This yields ÷p(tma_) = _ "-* t_ = 1.7t_ ---* Xm,_ = 0.2_tm_ = 0.2÷a 3/_, which

is roughly as far as any scattered particle can get from the kink.

All the matter in the volume swept by the wall from its formation is contained

within a distance Xma, in front of the kink, while the total distance traveled by the

wall is _'-'T .._ i't_: = i'a 3/2. Since -AT/Xm_, _ con.st., we take the density of the

matter in front of the wall to be roughly constant; in this way we get Py,o,_t ~ 6p_ at

any time. This means that the initial assumption of constant comoving speed Eq.(14)

is, at least approximately, self-consistent, substituting K by K' - K/6,

(_o) 1/2 (12p=oB_) 1/2= °

A more accurate calculationwould require a numerical simulation that takes into

account alsogravitationaleffects.

To proceed we need now an estimate of K'. Ifwe associatethe wallswith the peaks

of the distributionof galaxiesobserved in the survey e, which suggests the domain

walls may be relatedto the clusteringprocess,then the scaleof our network willbe

=/_o = 120 h-I Mpc today. In thisway we obtain/_'_= a/12p,_o = 6/3.I0-2_'-_2 •

thiscan alsobe written as

~ 12 :5-7J (16)
_rno

since _,_o/flmo ~ a/po_lo by geometry. If we want the walls to produce a density

fluctuation on a scale of the order, for example, of 20 h -1 Mpc in a major component

of the dark matter (assuming tim° = 1), setting _-7 = 10 -2 = 20 h -1 Mpc yields



9t_o --_ 1.2/3 lO-a(equivalently, a ,,_ 1.2flMeVa); this constitutes an upper bound on

9two in our model and shows once again that the domain walls never get to dominate

the energy density of the Universe.

We can now easily see that the self-consistency conditions on eq.(12) are ensured.

In fact, we know that

(_'7)a/= ,,_ alO-= (17)

which says that our initial assumption v << 1 is satisfied by a big margin.

means that at z > 30 the speed of the walls is smaller than the average thermal speed

of particles like neutrinos with mass m > 10 eV (see estimate given by eq.(9) and

compare it with eq.(17)). In general, when this occurs the friction term we used eq.(6)

has to be replaced by eq.(5). At early times one should write (pmo/aaa)(To/am)v ,,_

1/a_ _ v ,,, 20a 3 = 20 (z + 1) -3 (where To = Ttod_v) but, since the evolution of the

configuration takes place for the most part at z < 5, such a change wouldn't affect

our previous conclusions.

Let's continue our self-consistency check, going back to our original eq.(10). "_

know that in a Universe with critical density _mo = 1 and a = t 2t3, so that i_/v = 2/3t

at each point of the network; we therefore get

2 v ( p,,,al_o ) V= 104 v 2_5= 37 << 12 Rot = = 6/3.10 -_ t 2 _ v >> 4 • 10-6/3t

and

h
2-v<<

a

It also

1.5.10% 2
v >> 8- 10-s_3t

/3t _

As anticipated at the beginning of this section, at an3' time considered we meet

the conditions for friction dominated motion (analogous considerations apply also at

z > 30 in the rn = 10 eV neutrino case),

10



5. Discussion

Wehave shownthat, if domainwallscomingfrom somelate phasetransition are

able to perfectly reflect the particlesof gasof a componentof the dark matter, then

the domain wall network is bound to expand with the scalefactor, provided that

flwo/_,_o _<1.2/310-3. The coupling betweenthe scalar field _ and the particles in

question (call the associated field O) may assume the very simple form of a mass

term dependent on the spatial coordinates. For the sake of discussion take tp to be

fermions. A toy Lagrangian for q_ could be written as £(¢) = _ Or9 +(m+ f(¢))_O

(a Lagrangian of this form is obtained e.g. in ref.3 where f(q5) is a real function of the

field _ that gives the domain structure and it is assumed to get higher values within

the kinks than outside. Due to the presence of the kinks, the mass of the particles

changes when they get close to tile soliton. In the non-relativistic case this situation

is equivalent to obtaining a Schroedinger equalion for free particles with a potential

V = f(cI,(r-")). Vv'e can say that V(r") is a perfect barrier if the reflection coefficient on

both sides of the kink is unity.

Now we turn to consider a possible estimate of the wall thickness, that has been,

up to this point, a free parameter. If the domain walls maintain their position from the

formation (in the comoving coordinate system), we are actually bound to consider

second order phase transitions not earlier than z I = [_o/RH(zl) = Ro/3t! = 2.

_,-2 312
lu z! ---+ z s < 2500 ( Rn is the horizon scale at z! ) due to simple causality

considerations. As a consequence there is a lower bound to the thickness A of the

domain walls; since the interwall distance is /_t "" A ,,, [_ozf I at formation, A _

3.5 • 10 -5 in our units, which is A > 7.10-_h -1 Mpc. Such a distance is far greater

than the wavelength usually associated to an)' dark matter particle candidate ( e.g.

for neutrinos A_he,m_t < 10%V -1 at any z). We infer that V(r) can be considered a

11



classical barrier of height E,,,a_ such that for E < Ema_ the reflection coefficient is

unity and for E > Ema_ it is zero. In this paper we only consider the case E,_a_ ---, c¢.

A couple of issues still remain to be solved. The walls carry a gravitational field

that shifts the frequency of the microwave background radiation a slight amount when

this passes through the potential. Such a problem has been treated in refs. TM.

The infinitesimal shift of the average photon energy T while the photon is moving

for a dt time through the gravitational influence of a wall is given by dT ,._ 6T + T6V,

where V is the gravitational potential of the wall. V is roughly given by V -,_ GaR

at a distance R from the kink surface, within a cut, off value -._/_/2;/_ is the average

interwal] distance in physical coordinates at the time considered as. The value of V

varies in time due to the evolution of the network, so that _V = (OV/Ot)3t + _TV •

6R(where I_R[ = 6t). We want to calculate the total shift in the temperature of the

photons as they pass through the gravitational potential of a single wall, i.e. within

the cut off distance of V. If we take roughly OV/Ot ._ Ga_ in a region of order/_ in

size(this is clearly an over-estimate), when we integrate the above expression for dT

to find the total shift of the temperature we get a term _T/T = aGafl2/t in addition

to the usual term due to the expansion; Q is a fudge factor of order unity and t is the

age of the Universe at the epoch considered. The biggest distortion can be reached

at the present epoch: 6TIT .,_ 10 -s.

Another effect may be considered. The fluctuation in the matter density due to

the sweeping action of the wall gives rise to a gravitational influence limited to the

region of thickness d .._ 20h-lMpc in which 6Pro�Pro _ O. The minimum value of the

gravitational potential just due to this distribution of matter is t_, --_ Gpmd:. Using

the same arguments as above we can calculate the distortion due to the matter in

_T/T[,_ ,._ 13Gp,_oc[3/t (_ is fudge factor of order unity). Again the biggest _T/T is

reached today: ,5T/T .._ lO-_[d/2Oh-a Mpc] 3.

12



All other effects, including gravitational distortion at the last photon scattering

surface (if z! > 1000 _ 6T/T[Lss "" Ga[_oaLSS, with aLSS = 10 -3) and effects

originated at the phase transition, are comparatively much smaller.

The values obtained refer to the distortion originated from a single wall. Even

supposing that the phase transition takes place before the photon decoupling there

are only N ,.. RH/Ro "_ 3/6.10 -2 = 50 walls between us and the last surface of

scattering. An evaluation of the _ST/TIm due to the matter swept from the walls,

which is the biggest distortion, can be obtained multiplying the single wall distortion

by v/_ and gives 6T/Tt,_ .._ 10 -6. For the effects directly related to the domain

walls our values of 6T/T are, for the same a, one order of magnitude lower than that

calculated in the previous papers 6T/T ,_ IOaGaR_/_ "_ 10-7; this derives from an

interwall separation an order of magnitude smaller.

The gravitational interaction of the domain walls with matter is secondary with

respect to the sweeping action. In fact, taking for the sake of discussion the favorable

case of straight infinite walls, the peculiar speed gained by the particles due to the

gravitational influence would be, after a cosmological time 14, of the order vm '-_

2rcGat ,'. 10 -4"5.

In concluding the discussion we point out that one can also consider late first

order phase transitions in order to achieve our big values for the average interwall

distance, even while starting with a much smaller comoving correlation length at the

critical temperature. In this way one can remove the lower bound on A obtained in

this section. Such an analysis is left for future investigation.

13



6. Conclusion

This paper wants to offer a framework for future work. We have made the following

assumptions:

• A network of domain walls is established in the primordial Universe through a

second order phase transition.

• The walls interact with an important gaseous component of the present energy

density of the Universe, reflecting elastically all incoming particles regardless of

their kinetic energy.

• The configuration is bound to expand with the background comoving coordi-

nates (up to higher order corrections).

We reach the following conclusions:

• There is a wide range of values for a, surface density of the domain walls, such

that/_o, the average inter-wall distance today is of the order of the large scale

structure observed for the galaxies.

• The mechanism t'lat generates the fluctuations in the distribution of the dark

matter could be related also to the particle Lagrangian, and not just gravita-

tional.

• This suggests that the large scale structure could indeed form in intimate con-

nection with the presence of the domain walls, although studying the evolution

of the fluctuatic, ns and the long distance gravitational effects (see the discussion

on the Great Attractor in ref.l,1 obtained goes beyond the present work.

• Domain walls never come to dominate the energy density of the Universe.

14



• Walls with _ of Mev orderand sucha small interwall separation(/_o"_ 100Mpc)

are not able to distort the microwavebackground. Also the effects related to

the matter density fluctuations aresmall.

Someof the assumptions made to obtain our results may be relaxed, giving rise to

the different scenarios we earlier mentioned. Particularly intriguing is the possibility

of the wall decoupling mentioned in section 3 is: domain walls may give rise to a

spectrum of density perturbations and at some point decouple and start growing in

the way described in the previous work 4. This paper represents just a first attempt

to approach, the late phase transition issue from an angle that could solve some of the

problems other investigations have found. This paper is meant to stimulate interest

in such non-standard scenarios.
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Appendix

Consider an infinite wall moving along the x axis of a chosen coordinate system,

with speed v > 0. At one side of the wall particles with speed v. get reflected gaining

momentum Ap = 2m(v - v.) (particles with v. > v will not interact with the wall).

15



The momentumdistribution of the particles is definedon a 3 + 3 dimensionalphase __

space;neverthlessweareinterestedin the statistical distribution of the momentaonly

in the x direction, and we therefore integrate out all other degrees of freedom. In

this way we can write, in a very general way, a statistical distribution f((m/T)"]v,[)

defined so that B'_f_cf(B_']v=[)dv= = 1 ( where B = re�T) at. The coefficient

a depends on the actual origina] distribution we are considering. For a Boltzmann

distribution a = 1/2 while for light neutrinos (rn << 1 Mev ) c_ = 1.

There are dN = BOn (v- v=)f(B°lv, l)dvx interactions per each second and per

unit area with momentum exchange Ap (n is the number density of the particles).

On the other side of the wall Ap has opposite sign, so that we can write that the

pressure exerted by the gas on the wall is given by:

/2Pf = -2ran B-_°(y-y=)2 f(ly_:l)dyx +

If B -2'_2m, (y _ yx)2 .f(ly l)
O¢,

where y = BC'v and y= = B%=.The first integral refers to particles having speed

v= > v > 0 and hitting the wall from the back, while the second refers to particles

hitting the wall from the front.

We now derive, as an example, the form that f(Bov) assumes in the case of light

neutrinos ( m <<: 1MeI"). We start up with the statistical distribution of neutrinos

in thermal equilibrium:

_
at T > Td. At T < Td this becomes

= g__£--/ d3p
n (2/r)3 exp + "_d + l

where T - Tda/ae; since m/Td << 1 we g(,',

16



9
(2r) 3 f daP + 1

at all times.

The probability of finding a particle in an interval p_:, p, + dpx of the x component

of the momentum is then

" g _o_ 27rp± dpa.g(Px) -- n-(2-rr)3

where p± is any component of the momentum perpendicular to p,.

variables we get,

Changing

1 fo _ y±dy± (18)
f(Y_:) = _ exp_/'_ "4-Yl 4- 1

which is an implicit function of y_ = rav_:/T (yi = p./T). A similar calculation can

be performed for a Boltzmann distribution.
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